The Trypanosoma cruzi surface, a nanoscale patchwork quilt.
Mucci, J., Lantos, A.B., Buscaglia, C.A., Leguizamón, M.S. and Campetella, O.
Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1650HMP San Martín, Buenos Aires, Argentina.
Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1650HMP San Martín, Buenos Aires, Argentina. Electronic address: oscar@unsam.edu.ar.
The Trypanosoma cruzi trypomastigote membrane provides a major protective role against mammalian host-derived defense mechanisms while allowing the parasite to interact with different cell types and trigger pathogenesis. This surface has been historically appreciated as a rather unstructured 'coat', mainly consisting of a continuous layer of glycolipids and heavily O-glycosylated mucins, occasionally intercalated with different developmentally regulated molecules displaying adhesive and/or enzymatic properties. Recent findings, however, indicate that the trypomastigote membrane is made up of multiple, densely packed and discrete 10-150nm lipid-driven domains bearing different protein composition; hence resembling a highly organized 'patchwork quilt' design. Here, we discuss different aspects underlying the biogenesis, assembly, and dynamics of this cutting-edge fashion outfit, as well as its functional implications.
Trends in Parasitology 33(2): 102-112 (2017)